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Dimension of branching processes and self-organized criticality

Ricardo Garcia-Pelayo*
Ilya Prigogine Center for Studies in Statistical Mechanics and Complex Systems, Physics Department,
The University of Texas at Austin, Austin, Texas 78712
(Received 30 August 1993)

Branching processes and their application as a model of self-organized criticality are briefly reviewed.
The critical dimension for this model is calculated. The differences between our result and similar ones
on polymers and percolation are explained. We discuss semiquantitatively why the critical dimension of
a model of self-organized criticality that includes the oscillation of the sandpile around its critical value
would be different, perhaps even infinite. Finally, we conjecture that our mathematical results are more

general than they seem.
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I. INTRODUCTION

Branching processes are a special kind of Markov pro-
cess where the set of states is the set of natural numbers.
If we denote by Py _ ;(¢) the probability of going from the
state k to the state j in a time ¢, then a Markov process is
a branching process if

Pk___,J(t)z 2 Pl-’ll(t)...Pl_’Ik(t). (1)

It is convenient to think of P,_, 1, (¢) as the probability

that a living being (who reproduces asexually) will have /,
descendents at time ¢. Then (1) says that these probabili-
ties do not depend on the presence or absence of other in-
dividuals. In fact, branching processes were introduced
to study statistical matters concerning family trees in the
19th century [1,2] and have since had other applications
in genetics and in other branches of biology [3-5].

An important application of branching processes in
physics has been the study of chain reactions in a bomb
or in a nuclear reactor [6—8)]. In this case the neutrons
take the place of the living beings.

More recently [9,10], branching processes have been
applied to the study of self-organized criticality [11,12].
In these models grains of sand take the place of neutrons.
Time can be taken to be discrete [9] or continuous [10],
but as t — o both choices become equivalent [10]. Since
in this paper we will be dealing with asymptotic proper-
ties, we will use the discrete or the continuous time model
according to our convenience.

In the continuous time model for self-organized criti-
cality, the probability for the grain of sand to get stuck
during an infinitesimal amount of time dt is pdt. The
probability for the grain of sand to kick another grain of
sand into motion is u dt. The probability for none of the
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above to happen is 1—2udr. We will call these events
“death,” “reproduction,” and “nothing,” respectively.

The last paragraph remains true if “continuous” is sub-
stituted by “discrete,” ‘““an infinitesimal amount of time
dt” by “a unit of discrete time At,” and, everywhere else,
“dr’ by “At.”

Note that in both models the expected number of des-
cendents m is 1, since the probabilities of death and
reproduction cancel each other out. This condition
m =1 is known as ‘‘criticality,” and it is one of the in-
gredients of the self-organized criticality conjecture.

In the continuous time model one can write a
differential equation for the transition probabilities,
known as the Chapman-Kolmogorov equation and solve
it [10,13]. The solutions are

t
1—»0( ) 1 ,ll.t ’
1 j+1 (2)
15 (1) wit? | 1+pur » J70.

II. CRITICAL DIMENSION

After this background we can introduce the question
addressed in this article. If Eq. (1) is regarded not as a
definition but as a condition verified by an actual process,
then in general it will be an approximation equivalent to
neglecting the interactions between the different individu-
als. If the individuals are asexual beings, the interactions
will be competition for food. If they are sexual beings,
there will also be competition to mate. If the individuals
are grains of sand, then we have argued [10] that there
will be interaction if their paths cross in space (crossing
in space is sufficient for interaction; there does not have
to be crossing in space-time). Here we ask the reader to
picture the paths left by all the grains of sand that took
part in an avalanche and notice that they form a tree
whose root is at the tip of the sandpile and which grows
downward.

This happens more often the lower the dimension. To
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have an image of this, think of the branches of a tree,
which do not cross each other, but their shadows, which
are in a two-dimensional space, do. Conversely, if the di-
mension of the embedding space is high enough, the
branches will meet with probability zero.

To be more precise, let D, be the dimension of the tree
and let d be the dimension of the embedding space. Then
the intersection of two parts of the tree, which have di-
mension 2D, themselves, will generically have a dimen-
sion 2D,—d. If d >2D,, the intersection’s negative di-
mension should be interpreted as the exponent by which
the number of sites of the intersection scales if we are in a
discrete space and we are letting the spacing of the lattice
go to zero. Thus, for d >2D, and for infinitely large
trees, the proportion of their volume that intersects each
other is zero and, for that reason, the noninteracting
model for which Eq. (1) holds becomes exact. The di-
mension 2D, is called the “critical dimension.”

The computation of the probability density that the in-
tersection of the trees will affect a certain fraction of the
volume can in principle be carried out for trees of finite
sizes. But for infinitely large trees the said probability
density becomes a Dirac 8 function and the concept of
critical dimension can be well defined. These remarks
will become clearer in the course of the calculation to fol-
low.

First, let us define the probabilities {P;(¢)};-,, as the
probabilities { P;(¢)} -, provided that the tree exists, i.e.,
they satisfy
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Consider the sum 3= o Pj(1), where k is some posi-
tive real number. This sum is the probability that at time
t a tree has grown as fast or faster than kt“ divided by the
probability that that tree exists. Whether the lower limit
in the sum is read as ““;j is equal to the closest integer to
kt®’ or “j is equal to the highest integer smaller than
kt®” or some other definition along these lines is going to
be irrelevant as ¢ — oo . It is clear that for a=0 the value
of the sum is 1, for a= o the value of the sum is 0, and
that it decreases monotonically in between, as sketched in
Fig. 1. Now if in the limit  — o the number of grains of

sand in the avalanche is going to scale as j ~1%, then the

i Pi(=1 (3) limit lim,_, Efzkt,,Pj(t) will jump from O to 1 at . In
j=1 other words, the function sketched in Fig. 1 develops a
and singularity as ¢t — oo, as shown in Fig. 2. We remind the
) reader that the Hausdorff-Besicovitch dimension can also
Pi(t) _ @) be defined as the value at which a certain function devel-
Pi(1) —const . ops a singularity when a limit of analogous significance to
our ¢t — oo limit is taken [14].
Explicit calculation yields We now show the calculation:
J
lim 3 P/()=lm I — _BE
I—»wj:kta t"wj=kta ,u,t 1+’Ll,t
ke® © J kt®
S Y VI S l_w_ i | I
t—w ut | 1+put =0 | 1tut t—o put | 14+ut |— Kt
1+pt
e kt¢
. 14pue t t . 1
= lim — &L | K = _Ht =1 a _
e pt | 1+pe e | T+ pr Jm exp | kt®ln |1= 1770
_ a
= lim exp
t— o
0, a>1
= e~ k/m  g=1 (6)

I, a<l.
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FIG. 2. Ast— o, the preceding plot develops a jump from 1
to 0. It shows that all trees grow like ¢ raised to the number at
which the discontinuity takes place.

This shows that the number of branches grows propor-
tionally to time. Thus it follows that, for infinitely old
avalanches, the number of grains is proportional to time.
How does this relate to the spatial dimension of the cor-
responding trees? If the grains of sand move with some
constant velocity along some preferred direction, e.g., the
direction of the gradient of the height of the sandpile
then “proportional to time” can be substituted by “pro-
portional to the length along the longitudinal direction.”
Since, for the tree image, “number of grains” ‘“means
number of branches,” we have the result that the number
of branches of these infinitely old trees is proportional to
their height. In other words, if they are embedded in a
two-dimensional cone, the average volume of tree per
unit area will be constant, or the tree is two dimensional
and the critical dimension is 4.

What we have just described is a “directed model,” i.e.,
there is some preferred direction. What if the model is
not only homogeneous but also isotropic? The only prop-
agation possible with both these constraints is diffusive,
so that the distance to the origin is going to be now pro-
portional to V'z. Since the volume of the tree grows as
t%, the tree is now four dimensional and the critical di-
mension is 8.

These results agree with numerical research done both
on the problem of percolation and on a computer model
of avalanches. Obukhov [15] has found the critical di-
mension of a model of self-organized criticality to be 4,
but numerical studies on a cellular automaton model of
Christensen, Fogedby, and Jensen [16] show that its criti-
cal dimension is at least 6.

III. RELATION TO POLYMERS

The reader familiar with percolation or polymers
might think that the preceding calculations are a deriva-
tion of a particular case of the result obtained by Zimm
and Stockmayer in 1949 [17]. This is not so. The result
obtained by these authors was that the dimension of a po-
lymer obtained by randomly connecting chains is 4.
More precisely, they considered all the polymers that can
be built with a fixed number of segments n, which are
joined in such a way that at most z of them, where z is a
positive integer, can meet at a point. If the orientation
that the segments can take is random, then the average
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radius of gyration of the polymer R, scales as n'/%, i..,

lim,_, R(n) «n'/* In this average all polymers are
equally likely. This result applies directly to percolation
in a Bethe lattice (or Cayley tree). There, all “animals”
made of a fixed number 7 of bonds have the same perime-
ter, and thus [18] the same probability. Therefore, these
lattice animals have dimension 4.

We have also been computing the dimension of a typi-
cal tree. But, as we shall see, what we mean by typical is
not the same as what was meant by Zimm and Stock-
mayer. An example from the discrete time model will
suffice. Consider the two trees of Fig. 3. They are both
made of three elements. To calculate their probabilities
to occur, we have to multiply the probabilities of the
events taking place at each generation change. For the
first tree the events are ‘“nothing” in the first change,
“nothing” in the second change, and “death” in the third
change. The product of the respective probabilities is
(1—2u)’u. For the second tree we have reproduction in
the first change and two “deaths” in the second change.
The product of the respective probabilities is . Thus, in
contrast to the polymers of fixed n, our trees of fixed n
carry different weights and there is no reason why aver-
ages calculated with different weights should be the same.
In fact, we shall see in Sec. IV that for noncritical
branching processes the dimension is not 4.

It follows from the comparison between the results on
polymers and ours that “dimension” or “mean square ra-
dius” are measurable quantities not of a chemical species
but of a set of them in which different versions appear
with different probabilities. Zimm and Stockmayer’s
choice of probabilities is mathematically simple and cor-
responds to homogeneous conditions of synthesis. In cer-
tain environments, however, such as biological ones, the
synthesis might be taking place in the presence of gra-
dients of concentrations, and this could imply a dimen-
sion or a mean square radius different from the ones pre-
dicted by Zimm and Stockmayer.

FIG. 3. The probabilities of these two figures are different if
they are regarded as trees in a branching process, but are the
same if they are regarded as polymers synthesized under the
conditions assumed by Zimm and Stockmayer [17].
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IV. OSCILLATIONS OF THE SANDPILE
AND CRITICAL DIMENSION

If the process is subcritical or supercritical, the dimen-
sion of the corresponding trees is zero and infinity, re-
spectively. For these models the infinitesimal probabili-
ties of “death” and “reproduction” are p and p+A, re-
spectively, where A <O for the subcritical case and A>0
for the supercritical case. The corresponding Chapman-
Kolmogorov equation was solved by Kendall in 1948
[19,13]. The limit corresponding to (6) is

© 1 kt%—1
t—> 00
j=kt® At 1+fi _H
¢ Al A

_ 0, if A<O, for all
=N, ifa>0, foralla, 7

which means that the dimension of the subcritical trees is
zero and the dimension of the supercritical trees is
infinite, and the same is true for the isotropic, homogene-
ous model.

What bearing do the present results have on the ques-
tion of the critical dimension? The criticality in “self-
organized criticality” is stable in the sense that accumula-
tions or depletions of the quantity that is flowing through
the system tend to be eliminated. Equivalently, the flux
of that quantity tends to be kept constant. The precise
mechanism by which this is achieved has been called
“feedback’ by Kadanoff (see [20]) and identified by Sor-
nette [20] as an essential ingredient of self-organized criti-
cality. For the branching process model, different feed-
backs would correspond to different ways in which the
addition or depletion of grains of sand would change the
difference A. Some would be more natural than others,
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be it for their mathematical simplicity or for being deriv-
able from simple geometrical considerations.

The picture that comes out of all this is that of a sand-
pile which oscillates around its critical slope. As the
sandpile becomes bigger and bigger, the average dimen-
sion of the supercritical trees diverges. But, at the same
time, the size of the fluctuations of the slope around its
critical value goes (presumably, by virtue of some sort of
central limit theorem) to zero. So the question of wheth-
er the average dimension of an avalanche that takes place
in an infinitely large, oscillating sandpile is finite or not is
answered by a .0 limit. Different kinds of feedbacks
might give different results. Of course, if no theorem
similar to the central limit theorem applies to the average
value of the slope of infinitely large avalanches, then the
critical dimension is going to be infinite.

In any case, one should be aware that values for the
critical dimension obtained from models of self-organized
criticality that do not incorporate feedback could change,
even by an infinite amount, when the oscillations around
criticality are taken into consideration.

We have chosen particular branching process models
to compute critical dimensions. However, other ways to
implement subcriticality and supercriticality are also pos-
sible. We believe that our results depend only on whether
the expected value, m=3qjP;(t) is smaller than,
greater than, or equal to 1.
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